AL-HAFEEZ COLLEGE,ARA

ONLINE CLASSES (PDF MODE)

MATHEMATICS LECTURE NO- 02

LECTURES ON SET THEORY FOR B.SC PART 1 (HON'S) 2020-21

Dr. Md. Amjad Ali Asst. Prof. Dept. Of Maths Al- Hafeez College, Ara Email- prof.dramjadali@gmail.com

Hi dear students as we discussed about some properties of sets, now we shall start further concepts.

De Morgan's Theorem

First Form : To prove that (a) $(A \cup B)' = A' \cap B'$ i.e., the complement of union of two sets is the intersection of their complements.

Here A' has been used as a complement set of A etc.

Proof: Let $x \in (A \cup B)'$. Then $x \notin A \cup B$ (by definition) This ⇒ $x \notin A$ and $x \notin B$ ⇒ $x \in A'$ and $x \in B'$ ⇒ $x \in (A' \cap B')$. Thus $(A \cup B)' \subseteq A' \cap B' \dots (1)$ Again suppose that $y \in A' \cap B'$. Then $y \in A'$ and $y \in B'$ i.e., $y \notin A$ and $y \notin B$. This $\Rightarrow y \notin A \cup B \Rightarrow y \in (A \cup B)'$ $\therefore A' \cap B' \subseteq (A \cup B)' \dots (2)$ From (1) and (2), we get $(A \cup B)' = A' \cap B'$.

To prorve that $(A \cap B)' = A' \cup B'$ i.e., the complement of intersection of two sets is the union of their complements.

Proof: Let $x \in (A \cap B)'$. This $\Rightarrow x \notin A \cap B$ $\Rightarrow x \notin A \text{ or } y \notin B$ $\Rightarrow x \in A' \text{ or } y \in B'$ $\Rightarrow x \in A' \cup B'.$ Thus $(A \cap B)' \subseteq A' \cup B'$(1) Again, let $y \in A' \cup B'$. This $\Rightarrow y \in A'$ or $y \in B'$ $\Rightarrow y \notin A \text{ or } y \notin B$ $\Rightarrow y \notin (A \cap B)$ $\Rightarrow y \in (A \cap B)'$. Thus $A' \cup B' \subseteq (A \cap B)' / ...(2)$ From (1) and (2), we get $(A \cap B)' = A' \cup B'.$ De Morgan's theorem in general form

To prove that (i)
$$\begin{cases} \prod_{i=1}^{n} A_i \\ i=1 \end{cases}$$
 $i = 1 \\ (ii) \begin{cases} \prod_{i=1}^{n} A_i \\ \bigcap_{i=1}^{n} A_i \\ i=1 \end{cases}$ $i = 1 \\ i = 1 \end{cases}$

where *i* stands for complement. **Proof**: We prove the theorem by using methematical induction. We shall first of all, prove that

(i)
$$(A_1 \cup A_2 \cup A_3)' = A_1' \cap A_2' \cap A_3'$$

(ii) $(A_1 \cap A_2 \cap A_3)' = A_1' \cup A_2' \cup A_3'$

(i) Let
$$A_2 \cup A_3 = S$$
.
Then $(A_1 \cup A_2 \cup A_3)' = (A_1 \cup S)'$
 $= A_1' \cap S'$
 $= A_1' \cap (A_2 \cup A_3)'$
 $= A_1' \cap (A_2' \cap A_3')$
 $= A_1' \cap A_2' \cap A_3'$.

Similarly (ii) can be proved.

We prove the first. We assume that (i) is true for n = m, i.e., $(A_1 \cup A_2 \cup A_3 \dots \cup A_m)'$ $= A_1' \cap A_2' \cap A_3' \cap \dots \cap A_m'$...(1) Now $\{(A_1 \cup A_2 \cup A_3 \dots \cup A_m) \cup A_{m+1}\}'$ $= (A_1 \cup A_2 \cup A_3 \dots \cup A_m)' \cap A_{m+1}'$ $= (A_1' \cap A_2' \cap A_3' \dots \cap A_m') \cap A_{m+1}'$; from (1) Hence (i) is true for n = m + 1 also. But we know that (1) is true for n = 2, n = 3, ... and hence, by mathematical induction, it is true for every finite *n*. This proves (i).

Similarly (ii) is true for any finite n.

General method : Prove that (i) $X - \bigcup_i A_i = \bigcap_i (X - A_i)$ (ii) $X - \bigcap_i A_i = \bigcup_i (X - A_i)$ **Proof**: (i) Let $x \in X - \bigcup_{i} A_{i}$ Then $x \in X - \bigcup_i A_i \implies x \in X$ but $x \notin \bigcup_i A_i$ $\Rightarrow x \in X \text{ and } x \notin any A_i$ $\Rightarrow x \in X - A_i$, for each *i* $\Rightarrow x \in \bigcap_{i} (X - A_i)$ Hence $X - \bigcup_i A_i \subseteq \bigcap_i (X - A_i)$... (1) Again, let $y \in \bigcap_i (X - A_i)$. Then $y \in \bigcap_{i} (X - A_i) \Rightarrow y \in X - A_i$ for each *i* \Rightarrow y \in X and y \notin any A_i Hence $\bigcap_{i} (X - A_i) \subseteq X - \bigcup_{i} A_i \dots (2)$ Combining (1) and (2), we get $X - \bigcup_i A_i = \bigcap_i (X - A_i).$

This proves (i).

(ii) Let $x \in X - \cap A_i$. Then $x \in X - \bigcap_i A_i \implies x \in X$ but $x \notin \bigcap_i A_i$ $\Rightarrow x \in X \text{ and } x \notin A_i \text{ for at least one } i \in I_i$ $\Rightarrow x \in (X - A_i)$ for at least one $i \in I$ $\Rightarrow x \in \bigcup_i (X - A_i)$ Hence $X - \bigcap_{i} A_{i} \subseteq \bigcup_{i} (X - A_{i})$... (3) Again, let $y \in \bigcup_i (X - A_i)$. Then $y \in \bigcup (X - A_i) \Rightarrow y \in X$ and $y \notin A_i$ for at least one $i \in I$ $\Rightarrow y \in X$ and $y \notin (\bigcap A_i)$ $\Rightarrow y \in X - \cap A_i$ Hence $\bigcup_i (X - A_i) \subseteq X - \bigcap_i A_i \dots (4)$ Combining (3) and (4), we get $X - \bigcap_{i} A_{i} = \bigcup_{i} (X - A_{i})$ This proves (ii). If A, B and C are three sets, then

 $A \cap (B - C) = (A \cap B) - (A \cap C)$ Proof: We have, $A \cap (B - C) = A \cap (B \cap C')$ $= (A \cap B) \cap C', \text{ associative law}$ $= \phi \cup \{(A \cap B) \cap C'\}$ since $S \cup \phi = S$ $= (A \cap A') \cup \{(A \cap B) \cap C'\}$ $\stackrel{=}{=} (A \cap B \cap A') \cup \{(A \cap B) \cap C'\}$ $\stackrel{=}{=} (A \cap B) \cap (A' \cup C'); \text{ by distributive law}$ $\stackrel{=}{=} (A \cap B) \cap (A \cap C)'; \text{ by De Morgan's law}$ $\stackrel{=}{=} (A \cap B) - (A \cap C).$

Second method : Let $x \in A \cap (B - C)$ Then $x \in A \cap (B - C)$ $\Rightarrow x \in A$ and $x \in (B - C)$ $\Rightarrow x \in A$ and $(x \in B$ and $x \notin C)$ $\Rightarrow (x \in A \text{ and } x \in B)$ and $(x \in A \text{ and } x \notin C)$ $\Rightarrow x \in (A \cap B)$ and $x \notin (A \cap C)$ $\Rightarrow x \in (A \cap B) - (A \cap C)$ $\therefore A \cap (B - C) \subseteq (A \cap B) - (A \cap C) \dots (1)$

Again, let
$$y \in (A \cap B) - (A \cap C)$$
.
Then $y \in (A - B) \cap (A - C)$
 $\Rightarrow y \in A \cap B$ and $y \notin (A \cap C)$
 $\Rightarrow (y \in A \text{ and } y \in B)$ and $(y \notin A \text{ or } y \notin C)$
 $\Rightarrow (y \in A \text{ and } y \in B)$ and $y \notin C$
 $\Rightarrow y \in A$ and $(y \in B \text{ and } y \notin C)$
 $\Rightarrow y \in A \text{ and } y \in (B - C)$
 $\Rightarrow y \in A \cap (B - C)$

 $\therefore (A \cap B) - (A \cap C) \subseteq A \cap (B - C) \dots (2)$ From (1) and (2), we get $A \cap (B - C) = (A \cap B) - (A \cap C)$

Prove that (i) $P(A \cap B) = P(A) \cap P(B)$ (ii) $P(A \cup B) \neq P(A) \cup P(B)$ Let $X \in P(A \cap B) \Rightarrow X \subseteq A \cap B$ $\Rightarrow X \subseteq A \text{ and } X \subseteq B$ \Rightarrow X \in P(A) and X \in P(B) $\Rightarrow X \in P(A) \cap P(B)$ $\therefore P(A \cap B) \subseteq P(A) \cap P(B)$...(1) \Rightarrow $Y \in P(A)$ and $Y \in P(B)$ Again, let $Y \in P(A) \cap P(B)$ $\Rightarrow Y \subseteq A \text{ and } Y \subseteq B$ $\Rightarrow Y \subseteq A \cap B$ $\Rightarrow Y \in P(A \cap B)$...(2) Combining (1) and (2), we get $P(A \cap B) = P(A) \cap P(B)$ $\Rightarrow X \in P(A) \text{ or } X \in P(B)$ (ii) Let $X \in P(A) \cup P(B)$ $\Rightarrow X \subseteq A \text{ or } X \subset B$ $\Rightarrow X \subseteq A \cup B$ $\Rightarrow X \in P(A \cup B).$ $\therefore P(A) \cup P(B) \subseteq P(A \cup$

Hence ,Now we shall study cross product of sets in next class